As indicated in Section 23.4, the effect of a cutting fluid is to increase the value of C in the Taylor tool life equation. In a certain machining sit
As indicated in Section 23.4, the effect of a cutting fluid is to increase the value of C in the Taylor tool life equation. In a certain machining situation using HSS tooling, the C value is increased from C = 200 to C = 225 due to the use of the cutting fluid. The n value is the same with or without fluid at n = 0.125. Cutting speed used in the operation is v = 125 ft/min. Feed = 0.010 in/rev and depth = 0.100 in. The effect of the cutting fluid can be to either increase cutting speed (at the same tool life) or increase tool life (at the same cutting speed). (a) What is the cutting speed that would result from using the cutting fluid if tool life remains the same as with no fluid? (b) What is the tool life thatwould result if the cutting speed remained at 125 ft/min? (c) Economically, which effect is better, given that tooling cost = $2.00 per cutting edge, tool change time = 2.5 min, and operator and machine rate = $30/hr? Justify you answer with calculations, using cost per cubic in of metal machined as the criterion of comparison. Ignore effects of workpart handling time.